WHAT AND WHERE IS HEAVEN?

Does heaven exist? With well over 100,000 plus recorded and described spiritual experiences collected over 15 years, to base the answer on, science can now categorically say yes. Furthermore, you can see the evidence for free on the website allaboutheaven.org.

Available on Amazon
https://www.amazon.com/dp/B086J9VKZD
also on all local Amazon sites, just change .com for the local version (.co.uk, .jp, .nl, .de, .fr etc.)

VISIONS AND HALLUCINATIONS

This book, which covers Visions and hallucinations, explains what causes them and summarises how many hallucinations have been caused by each event or activity. It also provides specific help with questions people have asked us, such as ‘Is my medication giving me hallucinations?’.

Available on Amazon
https://www.amazon.com/dp/B088GP64MW 
also on all local Amazon sites, just change .com for the local version (.co.uk, .jp, .nl, .de, .fr etc.)


Some science behind the scenes

Venus

The physical planet Venus as opposed to the spiritual and symbolic VENUS  is the second-closest planet to the Sun, orbiting it every 224.7 Earth days. The planet is named after Venus, the Roman goddess of love.

It is the brightest natural object in the night sky, except for the Moon, reaching an apparent magnitude of ?4.6. Because Venus is an inferior planet from Earth, it never appears to venture far from the Sun: its elongation reaches a maximum of 47.8°. Venus reaches its maximum brightness shortly before sunrise or shortly after sunset, for which reason it is often called the Morning Star or the Evening Star.

Classified as a terrestrial planet, it is sometimes called Earth's "sister planet", because the two are similar in size, gravity, and bulk composition. Venus is covered with an opaque layer of highly reflective clouds of sulfuric acid, preventing its surface from being seen from space in visible light; this was a subject of great speculation until some of its secrets were revealed by planetary science in the twentieth century. Venus has the densest atmosphere of all the terrestrial planets, consisting mostly of carbon dioxide, as it has no carbon cycle to lock carbon back into rocks and surface features, nor organic life to absorb it in biomass. It has become so hot that the earth-like oceans that the young Venus is believed to have possessed have totally evaporated, leaving a dusty dry desertscape with many slab-like rocks.

The best hypothesis is that the evaporated water vapor has dissociated, and with the lack of a planetary magnetic field, the hydrogen has been swept into interplanetary space by the solar wind.The atmospheric pressure at the planet's surface is 92 times that of the Earth.

In 1980, The Pioneer Venus Orbiter found that Venus's magnetic field is both weaker and smaller (i.e. closer to the planet) than Earth's. What small magnetic field is present is induced by an interaction between the ionosphere and the solar wind, rather than by an internal dynamo in the core like the one inside the Earth. Venus's magnetosphere is too weak to protect the atmosphere from cosmic radiation.

This lack of an intrinsic magnetic field at Venus was surprising given that it is similar to Earth in size, and was expected to also contain a dynamo in its core. A dynamo requires three things: a conducting liquid, rotation, and convection. The core is thought to be electrically conductive, however. Also, while its rotation is often thought to be too slow, simulations show that it is quite adequate to produce a dynamo. This implies that the dynamo is missing because of a lack of convection in Venus's core. On Earth, convection occurs in the liquid outer layer of the core because the bottom of the liquid layer is much hotter than the top. Since Venus has no plate tectonics to let off heat, it is possible that it has no solid inner core, or that its core is not currently cooling, so that the entire liquid part of the core is at approximately the same temperature. Another possibility is that its core has already completely solidified.

Little more was discovered about Venus until the 20th century. Its almost featureless disc gave no hint as to what its surface might be like, and it was only with the development of spectroscopic, radar and ultraviolet observations that more of its secrets were revealed. The first UV observations were carried out in the 1920s, when Frank E. Ross found that UV photographs revealed considerable detail that was absent in visible and infrared radiation. He suggested that this was due to a very dense yellow lower atmosphere with high cirrus clouds above it.

90% of the surface Venus appears to be recently solid basalt lava. Spectroscopic observations in the 1900s gave the first clues about Venus's rotation. Vesto Slipher tried to measure the Doppler shift of light from Venus, but found that he could not detect any rotation. He surmised that the planet must have a much longer rotation period than had previously been thought. Later work in the 1950s showed that the rotation was retrograde. Radar observations of Venus were first carried out in the 1960s, and provided the first measurements of the rotation period which were close to the modern value.

Its microwave and infrared radiometers revealed that while Venus's cloud tops were cool, the surface was extremely hot—at least 425 °C, finally ending any hopes that the planet might harbor ground-based life. Mariner 2 also obtained improved estimates of Venus's mass and of the astronomical unit, but was unable to detect either a magnetic field or radiation belts.

Observations

For iPad/iPhone users: tap letter twice to get list of items.