WHAT AND WHERE IS HEAVEN?

Does heaven exist? With well over 100,000 plus recorded and described spiritual experiences collected over 15 years, to base the answer on, science can now categorically say yes. Furthermore, you can see the evidence for free on the website allaboutheaven.org.

Available on Amazon
https://www.amazon.com/dp/B086J9VKZD
also on all local Amazon sites, just change .com for the local version (.co.uk, .jp, .nl, .de, .fr etc.)

VISIONS AND HALLUCINATIONS

This book, which covers Visions and hallucinations, explains what causes them and summarises how many hallucinations have been caused by each event or activity. It also provides specific help with questions people have asked us, such as ‘Is my medication giving me hallucinations?’.

Available on Amazon
https://www.amazon.com/dp/B088GP64MW 
also on all local Amazon sites, just change .com for the local version (.co.uk, .jp, .nl, .de, .fr etc.)


Some science behind the scenes

Polycyclic aromatic hydrocarbons

Polycyclic aromatic hydrocarbons (PAHs, also polyaromatic hydrocarbons) are hydrocarbons—organic compounds containing only carbon and hydrogen—that are composed of multiple aromatic rings (organic rings in which the electrons are delocalized). Formally, the class is further defined as lacking further branching substituents on these ring structures.

PAHs are neutral, nonpolar molecules; they are found in fossil fuels (oil and coal) and in tar deposits, and are produced, generally, when insufficient oxygen or other factors result in incomplete combustion of organic matter (e.g., in engines and incinerators, when biomass burns in forest fires, etc.).. Benzo[a]pyrene is a well-researched example of a coal tar PAH whose metabolites are mutagenic and highly carcinogenic; as a class, benzopyrenes result from incomplete combustion at temperatures between 300 °C (572 °F) and 600 °C (1,112 °F They are considered pollutants due to their potential for causing adverse health effects; the same holds true of their presence at significant levels over time in human diets.

The dominant sources of PAHs in the environment are from human activity: Wood-burning and combustion of other biofuels such as dung or crop residues contribute more than half of annual global PAH emissions, particularly due to biofuel use in India and China. As of 2004, industrial processes and the extraction and use of fossil fuels made up slightly more than one quarter of global PAH emissions, dominating outputs in industrial countries such as the United States. Wild fires are another notable source. Substantially higher outdoor air, soil, and water concentrations of PAHs have been measured in Asia, Africa, and Latin America than in Europe, Australia, and the U.S./Canada.

In industrial countries, people who smoke tobacco products, or who are exposed to second-hand smoke, are among the most highly exposed groups; tobacco smoke contributes to 90% of indoor PAH levels in the homes of smokers.[13] For the general population in developed countries, the diet is otherwise the dominant source of PAH exposure, particularly from smoking or grilling meat or consuming PAHs deposited on plant foods, especially broad-leafed vegetables, during growth. PAHs are typically at low concentrations in drinking water.

Emissions from vehicles such as cars and trucks can be a substantial outdoor source of PAHs in particulate air pollution. Geographically, major roadways are thus sources of PAHs, which may distribute in the atmosphere or deposit nearby. Catalytic converters are estimated to reduce PAH emissions from gasoline-fired vehicles by 25-fold.

People can also be occupationally exposed during work that involves fossil fuels or their derivatives, wood burning, carbon electrodes, or exposure to diesel exhaust. Industrial activity that can produce and distribute PAHs includes aluminum, iron, and steel manufacturing; coal gasification, tar distillation, shale oil extraction; production of coke, creosote, carbon black, and calcium carbide; road paving and asphalt manufacturing; rubber tire production; manufacturing or use of metal working fluids; and activity of coal or natural gas power stations.

PAHs typically disperse from urban and suburban non-point sources through road run-off, sewage, and atmospheric circulation and subsequent deposition of particulate air pollution. Soil and river sediment near industrial sites such as creosote manufacturing facilities can be highly contaminated with PAHs.   Oil spills, creosote, coal mining dust, and other fossil fuel sources can also distribute PAHs in the environment.

Two- and three-ring PAHs can disperse widely while dissolved in water or as gases in the atmosphere, while PAHs with higher molecular weights can disperse locally or regionally adhered to particulate matter that is suspended in air or water until the particles land or settle out of the water column.

Algae and some invertebrates such as protozoans, mollusks, and many polychaetes have limited ability to metabolize PAHs and bioaccumulate disproportionate concentrations of PAHs in their tissues; however, PAH metabolism can vary substantially across invertebrate species.

Most vertebrates metabolize and excrete PAHs relatively rapidly. Tissue concentrations of PAHs do not increase (biomagnify) from the lowest to highest levels of food chains.

PAHs transform slowly to a wide range of degradation products. Biological degradation by microbes is a dominant form of PAH transformation in the environment. Soil-consuming invertebrates such as earthworms speed PAH degradation, either through direct metabolism or by improving the conditions for microbial transformations. Abiotic degradation in the atmosphere and the top layers of surface waters can produce nitrogenated, halogenated, hydroxylated, and oxygenated PAHs; some of these compounds can be more toxic, water-soluble, and mobile than their parent PAHs.

Cancer is a primary human health risk of exposure to PAHs, along with kidney disease. Exposure to PAHs has also been linked with cardiovascular disease and poor fetal development.

Observations

For iPad/iPhone users: tap letter twice to get list of items.