WHAT AND WHERE IS HEAVEN?

Does heaven exist? With well over 100,000 plus recorded and described spiritual experiences collected over 15 years, to base the answer on, science can now categorically say yes. Furthermore, you can see the evidence for free on the website allaboutheaven.org.

Available on Amazon
https://www.amazon.com/dp/B086J9VKZD
also on all local Amazon sites, just change .com for the local version (.co.uk, .jp, .nl, .de, .fr etc.)

VISIONS AND HALLUCINATIONS

This book, which covers Visions and hallucinations, explains what causes them and summarises how many hallucinations have been caused by each event or activity. It also provides specific help with questions people have asked us, such as ‘Is my medication giving me hallucinations?’.

Available on Amazon
https://www.amazon.com/dp/B088GP64MW 
also on all local Amazon sites, just change .com for the local version (.co.uk, .jp, .nl, .de, .fr etc.)


Observations placeholder

Molecular mechanisms of parthenolide's action: Old drug with a new face

Identifier

020066

Type of Spiritual Experience

Background

A description of the experience

Postepy Hig Med Dosw (Online). 2010 Mar 16;64:100-14.

[Molecular mechanisms of parthenolide's action: Old drug with a new face].

[Article in Polish]

Koprowska K1, Czyz M.

  • 1Zakład Biologii Molekularnej Nowotworów, Wydział Lekarski Uniwersytetu Medycznego w Łodzi.

Abstract

Parthenolide, a sesquiterpene lactone derived from the leaves of feverfew (Tanacetum parthenium), is considered a main bioactive component of this herb. Feverfew has been used orally or as an infusion for the treatment of migraine, arthritis, fever, and stomachache. Besides its anti-inflammatory and anti-migraine properties, parthenolide also shows anticancer activities in a variety of cell lines. It contains an alpha-methylene-gamma-lactone ring and an epoxide moiety which are able to interact with nucleophilic sites of biologically important molecules. Parthenolide modulates multiple targets, thereby contributing to its various in vitro and in vivo effects. Inhibition of NF-kappaB activity, constitutive in many types of cancers, via either interaction with IKK or more directly with the p65 subunit of NF-kappaB, is considered one of the main mechanisms of its action. In addition, inhibition of STAT and MAP kinase activities and the induction of sustained JNK activity as well as p53 activity via influencing MDM2 and HDAC1 levels lead to an increased susceptibility of cancer cells to chemo- and radiotherapy. At the epigenetic level, parthenolide reduces HDAC1 level and, by inhibiting DNMT2 activity, induces global hypomethylation of DNA, which can restore the expressions of some suppressor genes. Moreover, this compound reduces the cellular level of GSH in cancer cells, followed by ROS accumulation and apoptosis. A unique property of parthenolide is its ability to induce cell death mainly in cancer cells, while sparing healthy ones and it also protects normal cells from UVB and oxidative stress. More remarkably, it seems to have the potential to target some cancer stem cells. Its wide array of biological activity and low toxicity make parthenolide a very promising drug with multi-pharmacological potential, largely dependent on the cellular context.

PMID:

20354259

The source of the experience

PubMed

Concepts, symbols and science items

Concepts

Symbols

Science Items

Activities and commonsteps

Activities

Suppressions

Feverfew

Commonsteps

References