# Observations placeholder

## Hinton, Charles - What Is the Fourth Dimension – The Matrix

## Identifier

025904

## Type of Spiritual Experience

## Background

## A description of the experience

**What Is the Fourth Dimension? By Charles H. Hinton **

*Properties of Matter in the Fourth Dimension *

Suppose that instead of a sheet and a thread, there were a straight line and a plane. If the straight line were placed slantingwise in reference to the plane and moved downwards, it would always cut the plane in a point, but that point of section would move on. If the plane were of such a nature as to close up behind the line, if it were of the nature of a fluid, what would be observed would be a moving point.

If now there were a whole system of lines sloping in different directions, but all connected together, and held absolutely still by one framework, and if this framework with its system of lines were as a whole to pass slowly through the fluid plane at right angles to it, there would then be the appearance of a multitude of moving points in the plane, equal in number to the number of straight lines in the system.

The lines in the framework will all be moving at the same rate--namely, at the rate of the framework in which they are fixed. But the points in the plane will have different velocities. They will move slower or faster, according as the lines which give rise to them are more or less inclined to the plane.

A straight line perpendicular to the plane will, on passing through, give rise to a stationary point. A straight line that slopes very much inclined to the plane will give rise to a point moving with great swiftness. The motions and paths of the points would be determined by the arrangement of the lines in the system. It is obvious that if two straight lines were placed lying across one another like the letter X, and if this figure were to be stood upright and passed through the plane, what would appear would be at first two points. These two points would approach one another. When the part where the two strokes of the X meet came into the plane, the two points would become one. As the upper part of the figure passed through, the two points would recede from one another.

Let us now assume that instead of lines, very thin threads were attached to the framework: they on passing through the fluid plane would give rise to very small spots. Let us call the spots atoms, and I regard them as constituting a material system *in the plane*.

* Impenetrability*.--One spot must not pass through another. This condition is obviously satisfied. If the threads do not coincide at any point, the moving spots they give rise to cannot.